* Step 1: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: -(x,0()) -> x -(s(x),s(y)) -> -(x,y) double(0()) -> 0() double(s(x)) -> s(s(double(x))) half(0()) -> 0() half(s(0())) -> 0() half(s(s(x))) -> s(half(x)) if(0(),y,z) -> y if(s(x),y,z) -> z - Signature: {-/2,double/1,half/1,if/3} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {-,double,half,if} and constructors {0,s} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 1. The enriched problem is compatible with follwoing automaton. -_0(2,2) -> 1 -_1(2,2) -> 1 0_0() -> 1 0_0() -> 2 0_1() -> 1 0_1() -> 3 0_1() -> 4 double_0(2) -> 1 double_1(2) -> 4 half_0(2) -> 1 half_1(2) -> 3 if_0(2,2,2) -> 1 s_0(2) -> 1 s_0(2) -> 2 s_1(3) -> 1 s_1(3) -> 3 s_1(3) -> 4 s_1(4) -> 3 2 -> 1 * Step 2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: -(x,0()) -> x -(s(x),s(y)) -> -(x,y) double(0()) -> 0() double(s(x)) -> s(s(double(x))) half(0()) -> 0() half(s(0())) -> 0() half(s(s(x))) -> s(half(x)) if(0(),y,z) -> y if(s(x),y,z) -> z - Signature: {-/2,double/1,half/1,if/3} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {-,double,half,if} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))